Homework 2

P2.1.4 The voltage shown in Figure P2.1.4 is applied across a 5Ω resistor. Determine: (a) the resistor current.; (b) $p(t)$, $0 \leq t \leq 1 \mathrm{~min} ;$

Figure P2.1.4
(c) the energy dissipated in the resistor at $t=3 \mathrm{~min}$.

Solution: $v(\mathrm{~V})= \begin{cases}t / 12 & 0 \leq t \leq 60 \mathrm{~s} \\ 5 & 60 \leq t<180 \mathrm{~s} \\ 0 & t>180 \mathrm{~s}\end{cases}$
(a) $i=v / R ; i=t / 60 \mathrm{~A}, 0 \leq t \leq 60 \mathrm{~s} ; i=1 \mathrm{~A}, 60 \leq t<180 \mathrm{~s} ; i=0, t>80 \mathrm{~s}$.
(b) $0 \leq t \leq 60 \mathrm{~s} ; p(t)=\frac{v^{2}}{R}=\frac{1}{5}\left(\frac{t}{12}\right)^{2}=\frac{t^{2}}{720} \mathrm{~W}$, where t is in s .
(c) $w=\int_{0}^{180} p d t=\int_{0}^{60} \frac{t^{2}}{720} d t+\int_{60}^{180} \frac{25}{5} d t=700 \mathrm{~J}$.

P2.1.5 A voltage $v(t)=10 \cos 100 \pi t \mathrm{~V}$ is applied across a 10Ω resistor. (a) Sketch $p(t)$.
(b) Determine the average power dissipated in the resistor and the energy dissipated during half a cycle of $v(t)$.
Solution: $v(t)=10 \cos 100 \pi t=10 \cos \omega t$, where $\omega=100 \pi \mathrm{rad} / \mathrm{s}$, and so that the supply frequency is $\frac{100 \pi}{2 \pi}=50 \mathrm{~Hz}$, and the supply period is $\frac{1}{50} \equiv 20 \mathrm{~ms}$.

$$
f=\frac{w}{2 \pi} \text { where } f \text { is in } \mathrm{Hz} \text { and } w \text { is in } \frac{\mathrm{rad}}{2 \pi}
$$

(a) $p=\frac{v^{2}}{R}=\frac{(10 \cos 100 \pi t)^{2}}{10} \cos ^{2} \alpha=\left(1+\cos 2 \alpha+\frac{1}{2}=10 \cos ^{2} 100 \pi t=5(1+\right.$ $\cos 2 \omega t) \mathrm{W}$, as shown.

$$
\begin{aligned}
& \left(\mathrm{b}=\frac{5}{2 \pi} \int_{0}^{2 \pi}(1+\cos 2 \omega t) d(\omega t)=\frac{10}{2 \pi} \times \frac{2 \pi}{2}=5 \mathrm{~W}\right. \\
& \begin{array}{l}
w
\end{array}=\int_{0}^{0.01} p d t=\int_{0}^{0.01} 10 \cos ^{2} 100 \pi t d t=5 \int_{0}^{0.01}(1+\cos 200 \pi t) d t \\
& \\
&
\end{aligned}=5\left[t+\frac{\sin 200 \pi t}{200 \pi}\right]_{0}^{0.01}=0.05 \mathrm{~J} . \text { Since the average power dissipated is } 5 \mathrm{~W}, \text {, }
$$

the energy dissipated during one half cycle is $5(\mathrm{~W}) \times 0.01$ (s) $=0.05 \mathrm{~J}$. Note that the average power, i.e., average energy per unit time, is independent of the time scale, but the energy is the integral of instantaneous power with respect to time.

P2.2.6 Determine in Figure P2.2.6 the voltage across each current source, the current through each voltage source, and the power delivered or absorbed by each source.

Solution: $V_{a b}=20 \mathrm{~V}, I_{x}=0.8 \mathrm{~V}_{a b}=16 \mathrm{~A}$. From KCL at node 'a', net current flowing away from this node is $16-10=6 \mathrm{~A}$. Hence, 6 A must flow

Figure P2.2.6 into node ' a ' from the 20 V source.

Voltage drop across the CCVS $=0.5 I_{x}=8 \mathrm{~V}$;
let the voltage drop across the VCCS be V_{x}. From KVL the voltage drop $V_{a b}$ is the same whether going through the 20 V source or the two dependent sources. Hence $20=V_{x}+8$, which gives $V_{x}=12 \mathrm{~V}$.

The 20 V source delivers $20 \times 6=120 \mathrm{~W}$; the 10 A source delivers $20 \times 10=200 \mathrm{~W}$; VCCS absorbs $12 \times 16=192 \mathrm{~W}$; and CCVS

Figure P2.2.6-1 absorbs $8 \times 16=128 \mathrm{~W}$. Total power delivered $=320 \mathrm{~W}=$ total power absorbed.

P2.2.7 Determine the total power delivered or absorbed by each source in Figure P2.2.7, assuming the voltage sources are 1 V each, $l_{1}=2 \mathrm{~A}$, $I_{2}=1 \mathrm{~A}$, and $I_{3}=1 \mathrm{~A}$.

Solution: The current leaving node 'a' through V_{1} is $I_{2}+I_{3}=1+1=2 \mathrm{~A}$. The source V_{1} absorbs $1 \times 2=2 \mathrm{~W}$.

The current leaving node ' b ' through V_{2} is $I_{1}-I_{3}=2-1=1 \mathrm{~A}$. The source V_{2} delivers $1 \times 1=1 \mathrm{~W}$.

The current entering node 'c' through V_{3} is $I_{1}+I_{2}=3 \mathrm{~A} . V_{3}$ absorbs $1 \times 3=3 \mathrm{~W}$.

From KVL, $V_{a b}=2 \mathrm{~V}, V_{a c}=2 \mathrm{~V}$, and $V_{b c}=0$. The source I_{1} neither absorbs nor delivers power; the source I_{2} delivers 2 W ; the source I_{3} delivers 2 W .

Total power delivered = $5 \mathrm{~W}=$ total power absorbed.

P2.2.8 Determine in Figure P2.2.8 the voltage across each current source, the current through each voltage source, and the power delivered or absorbed by each source.

Solution: From KCL at node 'd': $10=5+I_{\Delta}$, so $I_{\Delta}=5 \mathrm{~A}$. From KCL at node 'b': $I_{Y}=$ $10+3=13 \mathrm{~A}$. From KCL at node ' a ': $3+5=8 \mathrm{~A}=I_{x}$. As a check, KCL at node ' c ' is: $13=8+5 \mathrm{~A}$.

From KVL around the outer loop:
 $-V_{c d}+10=0$, so that $V_{c d}=10 \mathrm{~V}$. From KVL around the mesh on the RHS: $10-V_{b a}=0$, so that $V_{b a}=10$ V . From KVL around the mesh 'abda': $-V_{b a}-10+V_{b d}=0$, so that $V_{b d}=20 \mathrm{~V}$. As a check, KVL around the mesh 'bcdb' gives: -10 $-V_{c d}+V_{b d}=-10$ $-10+20=0$. Upper 10 V source delivers 50 W ; lower 10 V source delivers 130 W ; 5 A source delivers 50 W ; 10 A source absorbs $200 \mathrm{~W} ; 3$ A source absorbs 30 W . Total power
 delivered $=230 \mathrm{~W}=$ total power absorbed.

P2.3.23 Determine the power delivered or absorbed dependent source, the voltage V_{x} should be determined.

Simplify. The circuit is in a simple enough form, although the two batteries can be combined in one 15 V battery.
Deduce. From KCL around a

Figure P2.3.23 10Ω
 enclosing the dependent source and the two batteries, the current through the lower 10Ω resistor is 100 mA in the direction shown. From Ohm's law, $V_{x}=10 \times 0.1=1 \mathrm{~V}$. The source current of the dependent source is 2 A. Since the voltage across the source is 15 V , and the 2 A is in the direction of a 15 V drop across the source, the source absorbs $15 \times 2=30 \mathrm{~W}$.

P2.3.31 Determine R, V_{X}, and V_{Y} in Figure P2.3.31, given that the current in the top connection is zero.
Solution: Initialize. The circuit is marked with given values. The nodes are labeled. To determine R, the voltage across it and the current through it should be determined. V_{X} and V_{Y} are determined from KVL around a mesh.

Simplify. The circuit is in a simple enough form.

Figure P2.3.31
Deduce. From KCL at node 'b', $I_{b e}=5 \mathrm{~A}$; from KCL at node ' e ', $I_{d e}=5 \mathrm{~A}$; from KCL at node ' c ', $I_{c a}=15 \mathrm{~A}$; from KCL at node 'a', $I_{a d}=$ 15 A ; as a check, KCL is satisfied at node 'd'. From Ohm's law, $V_{b e}=30 \mathrm{~V}, V_{a d}=15 \mathrm{~V}$, and $V_{d e}=5 R$. From KVL in the outer loop, $5 R+$ $15-30=0$, which gives $R=3 \Omega$. From KVL around the mesh 'abca', $-V_{1}+20=0$, or $V_{1}=$
 20 V ; from KVL around the mesh 'cbec', $V_{1}-30+V_{x}$ Figure P2.3.31-1 $=0$, or $V_{x}=10 \mathrm{~V}$. From KVL around the mesh 'acda', $-20-V_{y}+15=0$, or $V_{y}=-5 \mathrm{~V}$.

Figure P2.3.31-2

P2.3.32 Determine I_{0} in Figure P2.3.32.
Solution: Initialize. The circuit is marked with given values. The nodes are labeled. Simplify. The circuit is in a simple enough form.
Deduce. $V_{a b}=2 / o$, so that the current in the 2Ω resistor is $I 0$. From KCL at node 'a', $I_{d a}=3 I_{0}$. From KCL at node 'b', $I_{b c}=0$. From KVL around the mesh 'abcd', $-2 I_{0}+0+5-3 l_{0}$ $=0$, which gives $I_{O}=1 \mathrm{~A}$.

Figure P2.3.32

Figure P2.3.32-1

