Homework 2

P2.1.5 A voltage $v(t) = 10 \cos 100 \pi t$ V is applied across a 10 Ω resistor. (a) Sketch p(t).
(b) Determine the average power dissipated in the resistor and the energy dissipated during half a cycle of v(t).

Solution: $v(t) = 10 \cos 100 \pi t = 10 \cos \omega t$, where $\omega = 100 \pi$ rad/s, and so that the supply

frequency is
$$\frac{100\pi}{2\pi} = 50$$
 Hz, and the
supply period is $\frac{1}{50} = 20$ ms.
 $f = \frac{w}{2\pi}$ where f is in Hz and w is $in \frac{rad}{2\pi}$

(a)
$$p = \frac{v^2}{R} = \frac{(10\cos 100\pi t)^2}{10}$$
 $\cos^2 \alpha = (1 + \cos 2\alpha + \frac{1}{2} = 10\cos^2 100\pi t = 5(1 + \cos^2 \alpha + \frac{1}{2}) = 10$

cos2*wt*) W, as shown.

$$(b = \frac{5}{2\pi} \int_{0}^{2\pi} (1 + \cos 2\omega t) d(\omega t) = \frac{10}{2\pi} \times \frac{2\pi}{2} = 5 W$$

$$w = \int_{0}^{0.01} p dt = \int_{0}^{0.01} 10 \cos^{2} 100\pi t dt = 5 \int_{0}^{0.01} (1 + \cos 200\pi t) dt$$

$$= 5 \left[t + \frac{\sin 200\pi t}{200\pi} \right]_{0}^{0.01} = 0.05 J.$$
 Since the average power dissipated is 5 W,

the energy dissipated during one half cycle is $5(W) \times 0.01(s) = 0.05$ J. Note that the average power, i.e., average energy per unit time, is independent of the time scale, but the energy is the integral of instantaneous power with respect to time.

Solution: $V_{ab} = 20$ V, $I_X = 0.8V_{ab} = 16$ A. From KCL at node 'a', net current flowing away from this node is 16 - 10 = 6 A. Hence, 6A must flow into node 'a' from the 20 V source.

Voltage drop across the CCVS = $0.5I_x = 8$ V; let the voltage drop across the VCCS be V_X . From KVL the voltage drop V_{ab} is the same whether going through the 20 V source or the two dependent sources. Hence $20 = V_X + 8$, which gives $V_X = 12$ V.

The 20 V source delivers $20 \times 6 = 120$ W; the 10 A source delivers $20 \times 10 = 200$ W; VCCS absorbs $12 \times 16 = 192$ W; and CCVS

absorbs $8 \times 16 = 128$ W. Total power delivered = 320 W = total power absorbed.

Figure P2.2.6

- **P2.2.7** Determine the total power delivered or absorbed by each source in Figure P2.2.7, assuming the voltage sources are 1 V each, $l_1 = 2$ A, $l_2 = 1$ A, and $l_3 = 1$ A.
- **Solution:** The current leaving node 'a' through V_1 is $I_2 + I_3 = 1 + 1 = 2$ A. The source V_1 absorbs $1 \times 2 = 2$ W.

The current leaving node 'b' through V_2 is $I_1 - I_3 = 2 - 1 = 1$ A. The source V_2 delivers $1 \times 1 = 1$ W.

The current entering node 'c' through V_3 is

 $I_1 + I_2 = 3$ A. V_3 absorbs $1 \times 3 = 3$ W.

From KVL, $V_{ab} = 2$ V, $V_{ac} = 2$ V, and $V_{bc} = 0$. The source I_1 neither absorbs nor delivers power; the source I_2 delivers 2 W; the source I_3 delivers 2 W.

Total power delivered = 5 W = total power absorbed.

delivered = 230 W = total power absorbed.

- P2.3.23 Determine the power delivered or absorbed by the dependent source in Figure P2.3.23.
- **Solution:** Initialize. The circuit is marked 1 with given values. To determine the power delivered or absorbed by the dependent source, the voltage V_X should be determined.

Simplify. The circuit is in a simple enough form, although the two batteries can be combined in one 15 V battery.

Deduce. From KCL around a enclosing the dependent

source and the two batteries, the

current through the lower 10 Ω resistor is 100 mA in the direction shown. From Ohm's law, $V_X = 10 \times 0.1 = 1$ V. The source current of the dependent source is 2 A. Since the voltage across the source is 15 V, and the 2 A is in the direction of a 15 V drop across the source, the source absorbs $15 \times 2 = 30$ W.

Solution: Initialize. The circuit is marked with given values. The nodes are labeled. **Simplify.** The circuit is in a simple enough form. **Deduce.** $V_{ab} = 2I_0$, so that the current in

the 2 Ω resistor is I_0 . From KCL at node 'a', $I_{da} = 3I_0$. From KCL at node 'b', $I_{bc} = 0$. From KVL around the mesh 'abcd', $-2I_0 + 0 + 5 - 3I_0$ = 0, which gives $I_0 = 1$ A.

